Reversal of GSTP1 CpG island hypermethylation and reactivation of pi-class glutathione S-transferase (GSTP1) expression in human prostate cancer cells by treatment with procainamide.
نویسندگان
چکیده
Among the many somatic genome alterations present in cancer cells, changes in DNA methylation may represent reversible "epigenetic" lesions, rather than irreversible "genetic" alterations. Cancer cell DNA is typically characterized by increases in the methylation of CpG dinucleotides clustered into CpG islands, near the transcriptional regulatory regions of critical genes, and by an overall reduction in CpG dinucleotide methylation. The transcriptional "silencing" of gene expression associated with such CpG island DNA hypermethylation presents an attractive therapeutic target: restoration of "silenced" gene expression may be possible via therapeutic reversal of CpG island hypermethylation. 5-Aza-cytidine (5-aza-C) and 5-aza-deoxycytidine (5-aza-dC), nucleoside analogue inhibitors of DNA methyltransferases, have been widely used in attempts to reverse abnormal DNA hypermethylation in cancer cells and restore "silenced" gene expression. However, clinical utility of the nucleoside analogue DNA methyltransferase inhibitors has been limited somewhat by myelosuppression and other side effects. Many of these side effects are characteristic of nucleoside analogues that are not DNA methyltransferase inhibitors, offering the possibility that nonnucleoside analogue DNA methyltransferase inhibitors might not possess such side effects. Human prostate cancer (PCA) cells characteristically contain hypermethylated CpG island sequences encompassing the transcriptional regulatory region of GSTP1, the gene encoding the pi-class glutathione S-transferase (GSTP1), and fail to express GSTP1 as a consequence of transcriptional "silencing." Inactivation of GSTP1 by CpG island hypermethylation, the most common somatic genome alteration yet reported for human PCAs, occurs early during human prostatic carcinogenesis and results in a loss of GSTP1 "caretaker" function, leaving prostate cells with inadequate defenses against oxidant and electrophile carcinogens. We report here that the drug procainamide, a nonnucleoside inhibitor of DNA methyltransferases, reversed GSTP1 CpG island hypermethylation and restored GSTP1 expression in LNCaP human PCA cells propagated in vitro or in vivo as xenograft tumors in athymic nude mice.
منابع مشابه
Methyl-CpG-binding domain protein-2 mediates transcriptional repression associated with hypermethylated GSTP1 CpG islands in MCF-7 breast cancer cells.
GSTP1, encoding the pi-class glutathione S-transferase, is commonly inactivated by somatic CpGisland hypermethylation in cancers of the prostate, liver, and breast. We report here thathypermethylation of CpG dinucleotides at the 5' transcriptional regulatory region was sufficient to inhibit GSTP1 transcription in MCF-7 breast cancer cells and that repression of GSTP1 transcription was mediated ...
متن کاملPreoperative serum DNA GSTP1 CpG island hypermethylation and the risk of early prostate-specific antigen recurrence following radical prostatectomy.
PURPOSE Hypermethylation of the CpG island at the promoter region of the pi-class glutathione S-transferase gene (GSTP1) is the most common somatic genome abnormality in human prostate cancer. We evaluated circulating cell-free DNA GSTP1 CpG island hypermethylation as a prognostic biomarker in the serum of men with prostate cancer. EXPERIMENTAL DESIGN Prostate cancer DNA GSTP1 CpG island hype...
متن کاملSilencing of GSTP1 gene by CpG island DNA hypermethylation in HBV-associated hepatocellular carcinomas.
PURPOSE AND EXPERIMENTAL DESIGN Glutathione S-transferases, enzymes that defend cells against damage mediated by oxidant and electrophilic carcinogens, may be critical determinants of cancer pathogenesis. In this report, we assess the role of epigenetic silencing of the GSTP1 gene, a gene encoding the pi-class glutathione S-transferase, in the pathogenesis of hepatitis B virus (HBV)-associated ...
متن کاملTranscriptional gene silencing promotes DNA hypermethylation through a sequential change in chromatin modifications in cancer cells.
It is well established that DNA hypermethylation of tumor suppressor and tumor-related genes can occur in cancer cells and that each cancer subtype has specific gene sets that are commonly susceptible to methylation and silencing. Glutathione S-transferase (GSTP1) is one example of a gene that is hypermethylated and inactivated in the majority of prostate cancers. We previously reported that hy...
متن کاملChromatin Modifications in Cancer Cells Hypermethylation through a Sequential Change in Transcriptional Gene Silencing Promotes DNA
It is well established that DNA hypermethylation of tumor suppressor and tumor-related genes can occur in cancer cells and that each cancer subtype has specific gene sets that are commonly susceptible to methylation and silencing. Glutathione S-transferase (GSTP1) is one example of a gene that is hypermethylated and inactivated in the majority of prostate cancers. We previously reported that hy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 61 24 شماره
صفحات -
تاریخ انتشار 2001